Skip to main content
King Abdullah University of Science and Technology
Spatio-Temporal Statistics and Data Science
STSDS
Spatio-Temporal Statistics and Data Science
Main navigation
  • Home
  • People
    • Principal Investigators
    • Research Scientists
    • Postdoctoral Fellows
    • Students
    • All Profiles
    • Alumni
    • Former Members
  • Events
    • All Events
    • Events Calendar
  • News
  • Publications

bayesian inference

The role of skewed distributions in Bayesian inference: conjugacy, scalable approximations and asymptotics

Daniele Durante, Assistant Professor of Statistics at the Department of Decision Sciences, Bocconi University, Italy

Nov 8, 15:00 - 16:00

B1 L4 R4102

bayesian inference

In this talk, I will review, unify and extend recent advances in Bayesian inference and computation for such a class of models, proving that unified skew-normal (SUN) distributions (which include Gaussians as a special case) are conjugate to the general form of the likelihood induced by these formulations. This result opens new avenues for improved posterior inference, under a broad class of widely-implemented models, via novel closed-form expressions, tractable Monte Carlo methods based on independent and identically distributed samples from the exact SUN posterior, and more accurate and scalable approximations from variational Bayes and expectation-propagation. These results will be further extended, in asymptotic regimes, to the whole class of Bayesian generalized linear models via novel limiting approximations relying on skew-symmetric distributions.

Spatio-Temporal Statistics and Data Science (STSDS)

Footer

  • A-Z Directory
    • All Content
    • Browse Related Sites
  • Site Management
    • Log in

© 2024 King Abdullah University of Science and Technology. All rights reserved. Privacy Notice